Channel Capacity

The characterization of the channel capacity (the logarithm of the number of distinguishable signals) as the maximum mutual information is the central and most famous success of information theory.

Reading

The textbook is Chapter 7 of “Elements of Information Theory”[ref 1].

Channel Capacity
信道容量
A Note on Symmetric Discrete Memoryless Channels

Supplementary

Symmetric Channel

A permutation (rearrangement) \(\pi\) is one-to-one and onto function

$$\pi : \{1, \ldots , n\} → \{1, \ldots , n\}$$

It can be specified by the new values, e.g. \((2,4,3,5,1)\) specifies a permutation where \(\pi(1) = 2, \pi(2) = 4, \pi(3) = 3, \pi(4) = 5\) and \(\pi(5) = 1\).
Inverse permutation \(\pi^{-1}\): \(\pi \circ \pi^{-1} = id, id(i) = i, \forall i \in \{1, \ldots , n\}\).
There are \(n!\) permutations of \(n\) elements. That’s too many to generate them by numbering them all and choosing one at random. Random permutations are quite useful in randomized algorithms.
For a symmetric channel, we have that \(H(Y|X = x) = H(r)\) is constant for all \(x \in \mathcal{X}\). \(I(X;Y) = H(Y) - H(Y|X) = H(Y) − \sum_x H(Y|X = x)p(x) = H(Y)- H(r) \sum_x p(x) = H(Y) - H(r)\).

Capacity of Binary Erasure Channel

\(\eqalign{ H(Y|X) &= -\sum\limits_x P(X=x) \sum\limits_y P(Y|X=x)logP(Y|X=x) \cr &= -\sum\limits_x P(X=x)[\alpha log\alpha+(1−\alpha)log(1−\alpha)+0] \cr &= H(\alpha)}\)
\(P(Y=0) = \pi(1−\alpha)\)
\(P(Y=1) = (1−\pi)(1−\alpha)\)
\(P(Y=lost) = \pi \alpha + (1 - \pi)\alpha = \alpha\)
Thus,
\(\eqalign { H(Y) &= -\pi (1 - \alpha) log(\pi (1 - \alpha)) - (1 - \pi) (1 - \alpha) log((1 - \pi) (1 - \alpha)) - \alpha log \alpha \cr &= (1 - \alpha) h(\pi) + h(\alpha) }\)
Since \(P(Y = lost)\) is independent of \(\pi\), \(H(Y)\) is maximum for \(\pi = 0.5\), Eventually, the maximum of \(H(Y)\) is \((1−\alpha)+H(\alpha)\), at last we find \(C = 1-\alpha\).

Empirical Entropy

Let \(\hat p\) denote the empirical probability mass function corresponding to \(X_1, X_2, \ldots , X_n \stackrel{i.i.d.}{\sim} p(x), x \in \mathcal{X}\). Specifically,
\(\hat p(x) = \frac{1}{n}|\{ i \mid x_i = x\}| = \frac{1}{n} \sum_{i=1}^n \delta_x(x_i)\)
\(\eqalign { H(\hat{p}) &= - \sum_{x \in \mathcal{X}} \hat{p}(x) \log \hat{p}(x) &= - \sum_{x \in \mathcal{X}} \frac{1}{n} \sum_{i=1}^n \delta_x(x_i) \log \hat{p}(x) &= -\frac{1}{n} \sum_{i=1}^n \log\hat{p}(x_i) }\)
From this we see that,
\(H(\hat{p}) = - \frac{1}{n} \log \hat{p}(x^n) ~~~~~ \hat{p}(x^n) = \prod_{i=1}^n \hat{p}(x_i)\)

Jointly Typical

Theorem 7.6.1: set \({\epsilon \over 3} \le {\sigma^2 \over {n \epsilon^2}}\) for \(n \to \infty\).
7.49 is from the 7.37 directly.
\(\begin{align} Pr((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}(X,Y)) \\ &= \sum\limits_{(\tilde{x}^n, \tilde{x}^n) \in A_{\epsilon}^{(n)}} p(\tilde{x}^n)p(\tilde{y}^n) \\ &\le \sum\limits_{(\tilde{x}^n, \tilde{x}^n) \in A_{\epsilon}^{(n)}} 2^{(-nH(X)-\epsilon)}2^{(-nH(Y)-\epsilon)} ~~~~ \text{(from 7.35 and 7.36)} \\ &= |A_{\epsilon}^{(n)}| 2^{(-nH(X)-\epsilon)}2^{(-nH(Y)-\epsilon)} \\ &\le 2^{n(H(X,Y)+\epsilon)}2^{(-nH(X)-\epsilon)}2^{(-nH(Y)-\epsilon)} \\ &= 2^{-n(I(X;Y)-3\epsilon} \end{align}\)

The Noisy-channel Coding Theorem

The code rate R of a channel code is the proportion of the data-stream that is useful. That is, if the code rate is \(R = \log M/n\), for every \(\log M\) bits of useful information, the coder generates totally \(n\) bits of data, of which \(n-\log M\) are redundant.
A decoding function in 7.5: \(g : \mathcal{Y}_n \to \{1, 2, . . . , M\} \cup {fail}\).

Reference:

  1. Thomas M. Cover, Joy A. Thomas. (2006). Elements of Information Theory. John Wiley & Sons.
lyons-zhang

A good person! More about the author →